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The mechanism of generation of sand ridges, longitudinal stripes observed both in 
natural rivers and in the laboratory, is investigated with the aim of showing that 
the initiation mechanism is intrinsically associated with an instability of the erodible 
bottom rather than with the effect of the secondary vortices induced by the sidewalls 
as suggested by previous works. A linear stability analysis of flow in infinitely wide 
channels with an erodible bed is then presented. In order to model the generation of 
turbulence-driven cellular secondary motions a nonlinear turbulence closure scheme 
is used. Comparison with published experimental data for the case of air duct flow 
over a fixed ‘ridge-shaped’ bed is performed in order to check the performance of the 
turbulence model and proves satisfactory. It turns out that under suitable conditions 
the uniform unidirectional flow is unstable with respect to spanwise disturbances with 
a characteristic wavelength of the order of the flow depth. This theoretical finding is 
supported by experimental observations on wide open-channel flows. The secondary 
vortices are directed in such a way as to amplify bed perturbations, eventually leading 
to the formation of sand ridges irrespective of the presence of the sidewalls. 

1. Introduction 
Many field observations in straight wide rivers suggest the existence of cellular 

secondary currents. Periodic spanwise variation of free-surface velocity (Kinoshita 
1967) and sediment concentration (Vanoni 1946), often connected with the appear- 
ance, on the river bed, of a sequence of longitudinal ridges called ‘sand ribbons’ or 
‘sand ridges’ (Culberston 1967) have been detected and they invariably exhibit flow 
depth as a characteristic spatial scale. 

Secondary motions in the plane perpendicular to the main streamwise direction of 
a flow were classified into two categories by Prandtl (see Bradshaw 1987). Secondary 
flows of the first kind are driven by the curvature effect and exist in both laminar 
and turbulent flows, while those of the second kind arise only in turbulent flows in 
straight channels and non-circular ducts with turbulence as a driving mechanism. 

Since the pioneering work of Brundett & Baines (1964), several authors (see Gerard 
1978 for an extensive review) have studied the mechanics of secondary flow in non- 
circular conduits, showing that turbulence-driven secondary flows are induced by 
the imbalance of the normal Reynolds stresses in the cross-sectional plane. Speziale 
(1982) has introduced a sufficient condition for the development of longitudinal 
vortices stating that the longitudinal velocity field must give rise to a difference in the 
normal stresses for the secondary flow to appear. 

It may be easily shown that this condition cannot be satisfied if a turbulence closure 
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model based on the eddy viscosity concept is used. Therefore the standard k-t. (or 
k-I) model is unable to predict the appearance of this kind of cellular secondary 
motion. A turbulence model able to link the Reynolds stresses with the gradients of 
the longitudinal velocity field must indeed be used. This applies to, among others, 
the algebraic stress model (Launder & Ying 1972; Naot & Rodi 1982) and to the 
nonlinear k-1 model of Speziale (1987) that were, in fact, successfully applied to the 
study of corner secondary flows in square ducts. 

Being able to correctly model the production mechanism of secondary motions 
leaves however unresolved the question of why these vortices should form across the 
whole width of a sufficiently wide channel. The intensity of the vortices induced 
by the sidewall decreases rapidly when moving away from the lateral banks. The 
experimental work of Nezu, Nakagawa & Tominaga (1985) investigated the behaviour 
of secondary flows in smooth air ducts with different aspect ratios and showed no 
longitudinal vortices in the central region when the aspect ratio is greater than 5. 
This behaviour was confirmed by Naot & Rodi (1982) who solved numerically the 
flow in an open smooth channel. 

A possible mechanism of production of stable cellular secondary motions involves 
both the corner-induced vortices and an erodible bed. Nezu & Nakagawa (1984) 
postulated that the mild peak in the lateral bed shear stress caused by the presence 
of the corner secondary flow produces a spanwise variation of the bed-load transport 
that leads to the formation of a sand ridge. A new vortex will then be created by 
the presence of this ridge inducing a new peak in the tangential bed shear stress. If 
this process is recursively repeated, it will eventually cover the whole cross-section. 
This mechanism has been recently tested experimentally by the same authors (Nezu 
& Nakagawa 1989) who however noticed that regular patterns of ridges and troughs 
occurred in the central region even when the sidewall ridge had not yet sufficiently 
formed. Furthermore, they observed that sand ribbons appeared comparatively 
quickly over the whole cross-section after the formation of the first one. 

The above observations strongly suggest that the basic mechanism underlying the 
formation of cellular secondary vortices and sand ridges is an instability process 
as Ikeda (1981) first argued. The presence of the sidewalls would no longer be a 
necessary ingredient for secondary motions to arise, even though the corner vortex 
can still act as a further source of disturbances for the central region, an idea that 
was mentioned briefly also in the work of Nezu & Nakagawa (1989). 

The presence of a non-uniform roughness of the bed has often been related to 
the formation of sand ridges (see, for instance, Tsujimoto 1989). It has already been 
experimentally demonstrated (Hinze 1973 ; Muller & Studerus 1979; McLean 1981 ; 
Tominaga & Nezu 1991) that a lateral distribution of roughness generates secondary 
currents over a fixed flat bed. 

One may indeed wonder whether such an effect controls the formation of sand 
ridges (as pointed out by one of the referees). On the other hand observations 
suggest that ridges form in the laboratory over uniform sediments (Ikeda 1981; 
Nezu & Nakagawa 1989). Hence, it appears reasonable to first ascertain what is 
the mechanism which generates ridges in the uniform case and then investigate the 
(damping or enhancing) role that sediment non-uniformity might play. 

In the present paper the turbulence model of Speziale (1987) is used to perform a 
linear stability analysis of turbulent flow in an infinitely wide channel. The case of 
flow in an infinitely wide duct with sinusoidal walls is first analysed and a comparison 
with the experimental work of Nezu & Nakagawa (1984) is performed to finely tune 
the turbulence model. 
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FIGURE 1. Sketch of flow configuration. 
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The continuity equation for a uniform sediment is then added to the flow equations 
to solve the complete bed-fluid system. A dispersion relationship that gives the 
growth rate of a bed perturbation as a function of its wavenumber and of flow and 
sediment parameters is determined. 

The appearance of sand ridges is shown to be controlled by a delicate balance 
between the stabilizing effect of gravity, that tends to move grains away from the 
ridges and towards the troughs, and the destabilizing effect of tangential bed shear 
stress, acting in the opposite direction. Due to the weakness of the secondary vortices 
(whose intensity is always limited to less than 5 YO of the maximum longitudinal 
velocity), these two terms are of the same order of magnitude for a wide range of 
variation of flow and sediment parameters. An accurate modelling of the Reynolds 
stresses is therefore crucial for the formulation of an existence criterion. It will appear 
that the use of the nonlinear closure scheme of Speziale (1987) is quantitatively 
not wholly satisfactory but still allows us to show the existence of the instability 
mechanism. 

In the following section the problem of secondary motion in infinitely wide channels 
is formulated and the choice of the turbulence model is considered. Section 3 is devoted 
to the linearization process. In 54 the solution for flow in an infinitely wide duct 
with sinusoidal walls is presented and compared with the experiments. The linear 
stability analysis of flow over an erodible bottom is presented next and its results are 
discussed. The final section is devoted to some conclusions and to a discussion on 
possible future developments. 

2. Formulation of the problem 
Let us consider flow in a straight, infinitely wide open channel with an erodible 

bottom as sketched in figure 1. We are concerned here with the explanation of the 
mechanism of formation of sand ridges, i.e. perturbations of uniform flow which do 
not exhibit any dependence on the longitudinal coordinate. Hence we will drop all 
the x-derivative terms in the governing equations. 

Neglecting viscous effects, the flow equations can be written in the following 
dimensionless form 

au au au s az, az,  
aY Fr2 a y  aZ at -+v- +w- = - +-+-, 
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at ay aZ ay ay aZ 
aw aw aw ap aTyl aT,, 
a t  a Y  aZ az ay aZ 

-+I/- + w- = -- +-+-, 
-+I/-+ w- =-- + -+ -, 

av aw 
ay a Z  
-+-=o,  

(2.3) 

where ( U ,  V ,  W )  are the mean velocity components in the (x, y, z )  directions respec- 
tively, t is time, zi j  are the Reynolds stresses, S is the longitudinal slope, Fr is the 
unperturbed Froude number, and P is the difference between the total pressure and 
the hydrostatic pressure (1 - y)/Fr2. 

Variables have been made non-dimensional in the form 

where U;, Di denote average speed and depth for the uniform unperturbed flow, p is 
fluid density while D' and B' are the local depth and the bottom shape respectively. 

The continuity equation for sediment, assuming bed-load only, reads 

where Q is the dimensionless sediment flow rate in the spanwise direction and 

is the ratio between the commonly used scale of sediment discharge and the flow rate. 
In the above equation d;, s and ps are respectively grain size, relative density and 
porosity of the sediment, assumed uniform, while g is the gravitational acceleration. 

Modelling the influence of gravity on the direction of bed-load motion as suggested 
by Ikeda (1982) (see also Parker 1984) we finally write 

@(e) = S(0 - 0.047)$, (2.6a, b )  

where 8 is the Shields parameter, r is a constant assumed as 0.3, z is the amplitude of 
the bottom shear stress, zt is the component of the bed shear stress in the direction 
tangential to the bed itself, and @(0) is the Meyer Peter-Muller load function. 

An analysis of the characteristic timescales of flow and bed evolution shows that 
the latter is much slower, due to the smallness of the parameter 6, which typically 
ranges from to If a new time variable T = Qt is formally introduced, 
derivatives with respect to T can be neglected in the momentum equations so that the 
problem can be solved as a quasi-steady flow over a slowly varying erodible bottom. 
Following this approach no coupling exists between flow equations and the sediment 
continuity equation because the flow field is supposed to instantaneously adapt to 
bed variations. 
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As mentioned earlier the turbulence closure model must be able to relate the 
Reynolds stresses to the gradients of the longitudinal flow velocity in order to 
reproduce turbulence-driven secondary flows. A glance at the equation for the mean 
streamwise vorticity o 

a m  aw aw a 2  
- + v- + w- = -(Tzz - z y y )  + - - - (2.7) at ay  a Z  ayaz ( ;i2 :12) % 

reveals that the right-hand side of the equation acts as a source term for the vorticity. 
It is quite clear that if this term does not depend on the longitudinal velocity 
field, the equation is uncoupled from the streamwise momentum equation and the 
unidirectional flow solution is the only solution of the problem. 

In Speziale's model a constitutive relationship is derived as a higher-order approx- 
imation of the usual linear relationship for the Reynolds stress tensor 

(2.8) 

where k is the turbulent kinetic energy, Djj  is the mean rate of strain tensor, v, = i k i l  
is the eddy viscosity and 1 is the turbulence lengthscale. 

The next higher approximation of the above equation is obtained by Speziale on a 
purely deductive basis after assuming 7 to be a function of the form 

T . .  L = -5k6ij + 2vtDij, 
'I 

z = z  [ mi,- D'vq,k,l] . Dt 

Imposing that some general properties of the Navier-Stokes equation (coordinate 
and dimensional invariance, positiveness of k and material frame-indifference) be 
satisfied, Speziale derives at second order the following constitutive relationship : 

h h  

~ i j  = I$ + Col2(DinlDmj - fDmnDmn6ij) + C,l2(0ij  - iDmmSij), (2.10) 

where 

Following this approach, only two new constants (C, and C,) are introduced, 
which will be determined by comparison with experimental data. 

Once the Boussinesq hypothesis of linearity has been removed, thus creating the 
necessary link between the longitudinal flow field and the secondary flow, the structure 
of v, and 1 is taken here to be adequately represented by perturbing simple algebraic 
relationships known to hold for a uniform flow. This approach is likely to be 
inaccurate when turbulence dynamics has a strong influence on the flow field but 
might be appropriate in this context, where secondary flows appear as a consequence 
of (small) geometric variations of bed topography. With that in mind, the nonlinear 
k-1 model of Speziale (1987) was the natural choice. 

On the other hand, algebraic stress models like the one proposed by Naot & Rodi 
(1982) or the more complete one proposed by Demuren & Rodi (1984) are implicit in 
nature and are not derived by general principles on the basis of simple assumptions. 
Nevertheless, we want to stress here that, once the linearization process has been 
completed, the dependence of Reynolds stresses on the mean strain rate has close 
similarity to that of the Naot & Rodi algebraic stress model, which was successfully 
used to predict secondary flow in non-circular ducts. 
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The structure of v, and I could more appropriately be obtained as a solution of the 
full nonlinear k-1 model by which both the turbulent energy k and the lengthscale 
I are 'transported' through suitable transport equations. However, the approach 
chosen herein strongly simplifies the computational work. The absence of separation 
phenomena due to the peculiar structure of sand ridges was also encouraging in the 
assumption of local equilibrium implied by this choice. 

3. Linearization 
In this section the conditions under which the two-dimensional uniform flow loses 

stability to perturbations periodic in the spanwise direction are studied. The amplitude 
of such disturbances is supposed to be small enough for linearization to be a valid 
approach. Disturbed flows of the kind 

(U, I/, P )  = (Vo(Y), 0, PO(Y)) + -Eexp(oWu(y), U(Y),P(Y)) cos(az), 
W = --Eexp(aT)aw(y) sin(az), 

Q = --E exp(aT)aq sin(az), 
(B ,D)  = (0 , l )  + eexp(eT)(l,d) cos(az), 

(vt7 0 = (v*o(Y), lo(Y)) + ~exP(oT)(v(Y),W) cos(c1z), 
will be investigated with E being a small (strictly infinitesimal) parameter that plays 
the role of the amplitude of the bed perturbation with growth rate CJ and wavenumber 
c1. 

The non-orthogonal coordinate transformation 

which maps the cross-section on a rectangular domain, has been adopted. 

differential equations for the basic uniform flow reads 
Making the necessary substitutions and collecting terms of order c0, the system of 

v:ou; + v,ou; = -co, (3.1) 

Pi - (iCD + ~c,>(loz;u;* + l,'u;u,") = 0, 
where primes denote derivatives with respect to q while 

is a friction coefficient and u . ~  is the friction velocity for the uniform unperturbed 
flow. 

At first order in E ,  after some manipulations and a considerable amount of algebra, 
a system of ordinary differential equations is eventually obtained that can be written 
in the general form 

where d is considered as a parameter to be determined and 
D Z = d T + R ,  (3.3) 

z= (;). 
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The linear differential operator D is reported in Appendix A, as are the two vectors 

T, R that depend only on basic flow quantities. 
The above system has to be solved with appropriate sets of boundary conditions, 

which will be made explicit in the next sections for the two cases examined. The 
solution has been obtained numerically using a shooting method with a Runge-Kutta 
integration scheme. 

More precisely, linearity of the differential system allows us to express its solution 
in the form 

3 

2 = c c i z i  + dZ,  + 2,. (3.4) 
i=l 

Thus Z is a linear combination of three linearly independent solutions of the 
homogeneous initial value problem 

D Z = O  

each satisfying the boundary conditions at the lower boundary, plus particular solu- 
tions of the non-homogeneous differential systems 

DZ= T, D Z = R  

still satisfying the lower boundary conditions. 
The constants c1,c2,c3 and d are then determined by solving the linear algebraic 

non-homogeneous system obtained by imposing the remaining conditions at the upper 
boundary. 

As far as the sediment continuity equation is concerned, linearization yields the 
following equation for the growth rate of bed perturbations: 

where do is the Shields parameter for the basic uniform flow, and a positive w’ at 
the bottom corresponds to a secondary flow moving from the trough towards the 
ridge. The above equation clearly shows that the sign of the growth rate (and then 
the amplification or decay of bed perturbations) is the result of a balance between 
the two counteracting effects of tangential bed shear stress and gravity. 

In the following sections the solution procedure presented above will be employed 
for the cases of confined flow over a fixed sinusoidal bottom and open-channel flow 
over an erodible bed. 

4. Confined flow over a fixed sinusoidal bottom 
The need to ascertain the intensity of secondary flows induced by the presence of 

ridges was appreciated by Nezu & Nakagawa (1984) who studied air flow in a smooth 
rectangular duct in which longitudinal stripes of trapezoidal section were attached 
onto both the lower and the upper wall to simulate sand ribbons. 

They performed detailed hot-wire anemometric measurements of the three compo- 
nents of the velocity vector and provided contour plots showing the behaviour of the 
Reynolds stresses in the cross-sectional plane. 

This section is devoted to a comparison between the results obtained through the 
present theory and the experimental data (Nezu & Nakagawa 1984) in order to 
check the consistency of the turbulence model adopted herein and identify the most 
appropriate values of the constants CD and CE.  



708 M .  Colombini 

In his paper Speziale determined such constants by making use of just one ex- 
perimental point for the normal stress differences. We will focus our attention on 
the behaviour and on the intensity of the difference of the normal stresses in the 
cross-sectional plane, the ‘production’ term for the secondary flow, as a function of 
these constants. 

The symmetry of the problem now implies D = 1 - B and consequently d = -1 in 
the differential system (3.3). The fact that the value of d is fixed is consistent with the 
diminished number of boundary conditions. 

The no-slip condition is imposed at y = B + qo(l - B),  namely at a distance q = qo 
from the bed, where qo is the non-dimensional conventional reference level for no slip 
under uniform conditions. At the plane of symmetry q = 1, symmetry conditions are 
imposed that read 

u’ = w’ = 0 = 0. (4.1) 
Furthermore we follow Gerard (1978) and set 

vt = f ( r l ) U - D ,  (4.2a, b )  
u; 

- V )  [(I - rI2 + 4, 

1 = f ( f l )D,  

where 

f ( V )  = 

IC - 0.14 0.14 
b =  

2 ’  IC - 0.14’ 
a =  

and K is the von Karmh  constant taken as 0.4. Alternative forms of the function 
f have been tried (Nikuradse (see Schlichting 1979); Travis, Buhr & Sesonske 1971) 
producing similar results. This choice yields the following structure for 1 and vt at 
various orders in E :  

10 = f ( r l ) ,  vto = Co7f(q); (4.3a, b) 
I 

a = iod, v = v t o ( d +  [&],). (4.4a, b)  

Finally the quantities Co and qo have been determined assuming the usual log-law 
distribution for smooth walls by which 

I I 

COPT = 3 + 2.5 ln(Re C,’), 

qo = exp(-lcCo- 4 - l), 

where Re is the Reynolds number, set to a value of 13000 as in the experiments of 
Nezu & Nakagawa. 

As outlined in the previous section, when symmetry conditions (4.1) are imposed 
using the splitting (3.4), a 3 x 3 linear algebraic system is obtained, the solution of 
which gives the values of the three unknowns ci. 

In order to simulate the sharp changes in the bottom topography due to the 
presence of the trapezoidal ridges used by Nezu & Nakagawa, the bed was Fourier- 
analysed and the solutions corresponding to various harmonics were superimposed. 
Four harmonics were used for the wider case ( L  = 2Di,  with L the spacing between 
two consecutive ridges) and two for the narrower (L  = D i ) .  
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RGURE 2. Contour lines of ( T ~ ~  - zyy) x lo3. (a) Experiments of Nezu & Nakagawa (1984) (”); 
(b) present theory, CD = CE = 1.68; (c) present theory, CD = CE = 3.4. 

Speziale (1987) proposed a value of 1.68 for both the constants CD and CE.  This 
value, which was tested first, produced a secondary flow weaker than the experimental 
one. The maximum velocity in the cross-sectional plane was found to attain a value of 
about 0.8% of the maximum streamwise velocity Urn,,, less than half the value found 
in the experiments. Also the overall difference in the normal stresses was smaller than 
the observed one as shown in figures 2 (a) and 2 (b). 

Several combinations of the values of the two constants were tested in order to 
achieve a better performance of the model. Assuming CD = C,  = C and increasing 
C leads to an intensification of the secondary vortex until a value of C equal to 3.4 
is reached. A further increase of C does not lead to a corresponding increase in the 
intensity of the secondary flow. Numerical experiments were also performed in order 
to assess the sensitivity of the model to the variation of each constant. However, the 
use of different values for CD and C,  always led to a poorer prediction in terms of 
the amplitude of the difference of normal stresses, or of the vorticity intensity and 
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FIGURE 3. Contour lines of vorticity w. Experiments (NN). Contour increment is 0.02. Dotted 
lines correspond to negative values, solid lines correspond to positive values; the thick solid line 
corresponds to a value of zero. 
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FIGURE 4. Contour lines of vorticity w. Present theory, Co = CE = 3.4. Contour 
increment is 0.02; for legend see figure 3. 

distribution or of the velocity intensity and distribution. Hence, the value of 3.4 was 
adopted as the optimum choice for both constants. 

With this choice the difference of normal stresses z,,,, - z,, is shown in figure 2 (c) 
and it satisfactorily compares with the corresponding contour plot presented by 
Nezu & Nakagawa, both in the spatial behaviour and in the value of the maximum 
occurring over the ridge. The maximum streamwise velocity now attains a value of 
O.015Um,,. 

We want to point out that, at least for the range of values tested, the process of 
varying the constants affects mostly the intensity of the secondary flow but has only 
a minor influence on the pattern of the secondary flow itself, thus suggesting that the 
balance between the various terms proportional to CD and CE in the equation is not 
dramatically altered by the process of tuning. 

In figures 3, 4, 5 and 6 the comparison is extended to the vorticity and to the 
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separates areas of counter-rotating fluid. 

secondary flow field for the two cases analysed in the experiments. The effect of 
higher harmonics of the bed profile is evident in the wider case in which a weaker 
'secondary' vortex can be easily identified in the theoretical solution. Although barely 
noticeable in the experimental vector plots, its existence is strongly suggested both 
by the presence of a negative vorticity area close to the trough and by the observed 
behaviour of the main vortex. Experiments show in fact that the main vortex is 
pushed towards the ridge, its centre lying at a distance equal to L / 8  from the ridge. 
In the narrower case, in which the slope of the bottom is closer to a cosine curve, 
the configuration is more symmetric and the centre of the cellular vortex is set at 
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FIGURE 8. Contour lines of ‘production’ term (az/ayaz)/(z, ,  - rYy)  x lo3. (a) Experiments (NN); 
(b) present theory, CD = CE = 3.4. For legend see figure 3. 

L/4 from the ridge. The presence of this secondary vortex is also responsible for 
the upflow over the ridge being noticeably stronger than the downflow, a feature 
recognized both in the experiments and in field observation of actual rivers (Jackson 
1976). 

The comparison with the experiments, even in the context of a linear framework like 
the one adopted herein, seems satisfactory, with the only noticeable exception of the 
transverse Reynolds stress z~~ which shows a poor agreement with the experimental 
measurements, both quantitatively and qualitatively (figure 7a, b).  

Nezu & Nakagawa were well aware of the fact that the experimental precision of 
zyz was lower than that of the other Reynolds stresses because the X-wire procedure 
adopted for the measurement of this quantity involved the rotation of the probe 
to three different angles instead of the simultaneous measurements of V and W .  



Formation of sand ridges 713 
Nevertheless this discrepancy in a quantity that, as it will soon be shown, plays a key 
role in the dynamics of the bed, deserves further comment. 

The vorticity balance (2.7) may be recalled to shed some light on this apparent 
inconsistency. The convective terms on the left-hand side are of higher order with 
respect to the two terms appearing on the right-hand side, a fact that is clearly 
confirmed by the experiments. At order E the vorticity equation reduces then to a 
balance between the production term, involving the difference of the normal stresses, 
and the term related to the tangential stress z,,~. Our prediction of the production 
term is in good agreement with the experimental plots (see figure 8 4  b), namely the 
qualitative pattern is the same (regions of positive and negative production appear 
to be correctly predicted) and the quantitative agreement is reasonable. 

This result, together with the fact that Nezu & Nakagawa were unable to use the 
measured values of tangential stress to evaluate this term ‘ . . . because these second- 
differential values indicated a large scatter . . . ’, seems to indicate that the inability 
to predict the spanwise tangential stress with the same degree of success might be 
largely due to experimental inaccuracy. 

5. Open-channel flow over an erodible bottom: sand-ridge formation 
We now proceed to investigate the time evolution of bed disturbances. It will 

be shown that, under suitable conditions, spanwise perturbations that experience an 
amplification in time do exist. 

The velocity vector must again vanish at the bed, while at the free surface the 
dynamic and kinematic conditions read 

is adopted, where 1 is chosen such as to produce a logarithmic profile for the basic 
flow and reads 

with 
1 = g(rl)D, (5.5) 

g(v> = Xrl(1 - d4. 
At order c0 and e respectively, this choice leads to 

( 5 . 6 ~ ~  b )  

(5.74 b)  

while the friction coefficient Co is now (rough wall) 

COqf = 6 - 2.5 ln(2.5dJ. 
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Imposing the four boundary conditions at the free surface leads to a non- 
homogeneous algebraic system in the four unknowns c1,c2,c3 and d that gives the 
response of the fluid to a bed disturbance of amplitude c. Substitution of this solution 
into (3.5) yields a dispersion relationship among the parameters that can be written 
in the general form 

F ( o ,  a, d,, Fr) = 0. (5.8) 

For given ds and Fr , o depends on the wavenumber a. As shown in (3.5) the sign of 
o is determined by a balance between a ‘destabilizing’ term, related to the bed shear 
stress component in the direction tangential to the bed, and the stabilizing effect of 
gravity. In figure 9 the destabilizing term [W’/U&~ is plotted versus the wavenumber 
a, with the relative roughness d, as a parameter; its behaviour is almost unaffected 
by changes in the Froude number. The effect of gravity is to shift vertically the entire 
plot by the amount - r /O i .  This quantity is inversely proportional to Fr through Oo, 
which reads 

1 

/7 

2 Lo Oo = Fr 
(s - l)&* (5.9) 

Thus it is clear that an underestimation of the destabilizing term will eventually lead 
to an overestimation of the critical Froude number, defined as the Froude number at 
which the action of gravity exactly balances that of the shear stress. 

The role played by the Froude number in the present calculation needs to be 
clarified. 

As far as the flow field solution is concerned, the Froude number has an influence 
only on the amplitude of free-surface perturbations. These undulations appear as 
a consequence of bed perturbation and have only a minor effect on the amplitude 
and structure of secondary flow, which is essentially ‘turbulence-driven’. The small Fr 
dependence of the destabilizing term plotted in figure 9 follows. 
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When an erodible bed is considered, the value of the Shields parameter for the basic 
uniform flow 1'3~ is fixed once d, and Fr are fixed, as shown by (5.9). A higher Froude 
number corresponds then to a higher basic sediment transport and its influence on 
the appearance of sand ridges is much stronger than on the intensity of the secondary 
flow. 

In figure 10 the behaviour of the growth rate 6, for a value of the relative roughness 
d,  of 0.01, is presented as a function of the wavenumber c1 with the Froude number 
as a parameter. 

It can be seen that for Fr =I the unidirectional uniform flow is stable. When the 
value of the Froude number is raised, unstable disturbances can develop leading to a 
spanwise periodic three-dimensional flow. Disturbances with a wavenumber of about 
4.8 exhibit the maximum growth rate. 

The present analysis therefore predicts the existence of a region of instability for 
spanwise bed perturbations with a characteristic wavelength of the order of the 
flow depth. As stated before, the 'supercritical' behaviour of sand ridges is almost 
incidental and probably related to an underestimation of the destabilizing term. 

To the author's knowledge, the only experimental data available for comparison 
are those of Kinoshita and Wolman & Brush as reported by Ikeda (1981), a single 
experiment of Nishiya & Makino (NM) as reported by Hayashi, Ohashi & Kotani 
(1985), and those contained in the recent paper by Nezu & Nakagawa (1989) (NN). 
Although information about the complete set of flow and sediment parameters 
involved in each run is not sufficient to allow a detailed comparison, a qualitative 
comparison with existing observations on sand ridges has been attempted. 

In the experiments reported by Ikeda (198 1) the characteristic wavenumber ranges 
from 2.5 to 4, almost centred around a value of n which represents a spanwise 
periodicity that is exactly twice the depth. The value of 4.8 predicted by the present 
theory describes shorter perturbations, with a wavelength 1.3 times the flow depth, 
a configuration that matches very well the one obtained in the NM experiment. A 
comparison between the experimental conditions of the N M and NN experiments 
suggests the possibility that the wavelength can be strongly influenced by the presence 
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of the sidewalls if the aspect ratio is not sufficiently high. In fact the data of the two 
experiments differ essentially in the aspect ratio (25 for NM and 11 for NN) and in 
the measured value of the wavenumber, 4.8 for NM and 2.6 for NN. 

The bed topography of the experiment of NM shows however a fairly regular 
sequence of almost 20 ridges and troughs, while the velocity field measured by NN 
over a naturally developed sand ribbon bed shows a complex flow structure, with 
fewer and wider vortices, the two main vortices closer to the centreline rotating in the 
same direction, so that it is really difficult to recognize any periodic behaviour and 
even more difficult to identify a characteristic wavelength. 

With regard to the critical Froude number, the experimental work shows that 
ridges appear for Froude numbers ranging from 0.5 to 2. As discussed above, 
the overestimation of the critical Froude number for instability is bound to be 
caused by an underestimation of the tangential bed shear stress. This implies that 
the destabilizing effect on the sediment bottom is underestimated by the present 
theory. 

In this respect it may be worth mentioning the work of Demuren & Rodi (1984) 
who, testing the simplifying assumptions usually adopted in the algebraic-stress 
models, discovered that, in the structure of the tangential Reynolds stress, terms that 
are cubic in the gradients of the velocity field are not negligible within most of the 
domain. This fact suggests that a higher-order closure scheme may be necessary for 
an accurate modelling of the tangential Reynolds stresses. 

In spite of the limitations of the present results, we do regard as an important 
achievement having shown that a bottom instability driven by secondary flows is 
indeed feasible and independent of the presence of sidewalls. 

6.  Conclusions 
A linear stability analysis of flow in infinitely wide channels with an erodible 

bottom has been presented, showing that the uniform flow can lose stability to per- 
turbed configurations that are spanwise periodic and still uniform in the longitudinal 
direction. 

This instability mechanism can explain the formation of sand ridges when the 
basic flow does not depend on the lateral coordinate, i.e. when the aspect ratio is 
reasonably high, eliminating the need for the corner-induced vortex as the initiation 
mechanism. 

The nonlinear turbulence closure of Speziale that we used is capable of providing 
a non-zero difference of the normal Reynolds stresses in the cross-sectional plane, a 
necessary condition for the generation of turbulence-driven secondary flows. 

The ‘forced’ solution of cellular vortices generated by a sinusoidal fixed bottom 
is used to ascertain the performance of this fairly new closure hypothesis, showing 
that, with an appropriate choice of the constants of the model, a flow field consistent 
with the experiments is obtained. When the comparison is extended to the Reynolds 
stress tensor, some discrepancies are found, especially in the behaviour of the spanwise 
tangential shear stress. This seems to be at least partly due to experimental inaccuracy. 
The possibility that an even higher-order turbulence closure should be adopted 
in order to achieve more accurate modelling of tangential stresses needs to be 
investigated. 

When the stability of the whole fluid-bed system is studied, for each fixed value 
of d, a critical Froude number that bounds the unstable region and information 
on the wavelength of the most unstable disturbances are found. Predictions of the 
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characteristic wavenumber agree with the experiments if the aspect ratio is sufficiently 
high, while the threshold value of Fr for instability is overestimated, probably due to 
an underestimation of the bed shear stress. 

Secondary currents may also be generated by a non-uniformity of bed roughness. 
Since grain sorting is known to accumulate fine sand over the ridges and the secondary 
flow induced by changes in bed roughness is directed, near the bed, from the rough 
part towards the smooth one, a stronger destabilizing effect can be obtained if the 
hypothesis of uniform sediment is removed. A more detailed modelling of turbulence 
quantities, possibly involving a transport equation for the turbulent kinetic energy k, 
would probably become necessary if such effect has to be considered. 

The author is most grateful to Professor G. Seminara for his advice and discussion 
on various issues regarding this research. This work has been supported by the 
Italian Minister0 dell’Universiti e della Ricerca Scientifica e Tecnologica under grants 
MURST 40% and 60%. 

Appendix A 
The linear differential operator D can be written in the form 

dll d12 d13 d14 

d2l d22 d23 d24 

d3i d32 d33 d34 

d4i d42 d43 du 

D =  ( , 

where 

Open-channel $ow 
Making use of (3.1)y (3.2), and (5.7a,b) results in 
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Confined $ow 
Since d = -1 and using (3.1), (3.2), and (4.4a,b) we obtain 
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